Binomna tabela za n = 7, n = 8 in n = 9

Binomna naključna spremenljivka je pomemben primer a diskretna naključna spremenljivka. Binomna porazdelitev, ki opisuje verjetnost za vsako vrednost naše naključne spremenljivke, lahko v celoti določimo z dvema parametroma: n in str. Tukaj n je število neodvisnih preskusov in str je stalna verjetnost uspeha v vsakem poskusu. Spodnje tabele ponujajo binomne verjetnosti za n = 7,8 in 9. Verjetnosti v vsakem so zaokrožene na tri decimalna mesta natančno.

Ali bi a uporabiti binomno porazdelitev?. Preden začnemo uporabljati tabelo, moramo preveriti, ali so izpolnjeni naslednji pogoji:

  1. Imamo končno število opazovanj ali poskusov.
  2. Rezultat vsakega preskušanja je mogoče opredeliti kot uspeh ali neuspeh.
  3. Verjetnost uspeha ostaja konstantna.
  4. Opazovanja so med seboj neodvisna.

Ko so ti štirje pogoji izpolnjeni, bo binomna porazdelitev dala verjetnost r uspehi v poskusu s skupaj n neodvisne preizkušnje, pri katerih je vsaka verjetno uspešna str. Verjetnosti v tabeli so izračunane po formuli C(n, r)strr

instagram viewer
(1 - str)n - r kje C(n, r) je formula za kombinacije. Za vsako vrednost n Vsak vnos v tabelo je organiziran po vrednostih str in od r.

Druge mize

Za druge tabele binomne porazdelitve imamo n = 2 do 6, n = 10 do 11. Ko vrednosti np in n(1 - str) sta večja ali enaka 10, lahko uporabimo normalni približek binomni porazdelitvi. To nam omogoča dober približek naših verjetnosti in ne zahteva izračuna binomskih koeficientov. To daje veliko prednost, saj lahko pri teh binomnih izračunih precej sodelujemo.

Primer

Genetika ima veliko povezav z verjetnostjo. Ogledali si bomo enega za ponazoritev uporabe binomne porazdelitve. Recimo, da vemo, da je verjetnost potomca, da podeduje dve kopiji recesivnega gena (in ima torej recesivno lastnost, ki jo preučujemo) 1/4.

Poleg tega želimo izračunati verjetnost, da ima določeno število otrok v osemčlanski družini to lastnost. Pustiti X naj bo število otrok s to lastnostjo. Gledamo tabelo za n = 8 in stolpec s str = 0,25 in glejte naslednje:

.100
.267.311.208.087.023.004

To za naš primer pomeni, da

  • P (X = 0) = 10,0%, kar je verjetnost, da nihče od otrok nima recesivne lastnosti.
  • P (X = 1) = 26,7%, kar je verjetnost, da ima eden od otrok recesivno lastnost.
  • P (X = 2) = 31,1%, kar je verjetnost, da imata dva od otrok recesivno lastnost.
  • P (X = 3) = 20,8%, kar je verjetnost, da imajo trije otroci recesivno lastnost.
  • P (X = 4) = 8,7%, kar je verjetnost, da imajo štirje otroci recesivno lastnost.
  • P (X = 5) = 2,3%, kar je verjetnost, da ima pet otrok recesivno lastnost.
  • P (X = 6) = 0,4%, kar je verjetnost, da ima šest otrok recesivno lastnost.

Tabele za n = 7 do n = 9

n = 7

str .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .932 .698 .478 .321 .210 .133 .082 .049 .028 .015 .008 .004 .002 .001 .000 .000 .000 .000 .000 .000
1 .066 .257 .372 .396 .367 .311 .247 .185 .131 .087 .055 .032 .017 .008 .004 .001 .000 .000 .000 .000
2 .002 .041 .124 .210 .275 .311 .318 .299 .261 .214 .164 .117 .077 .047 .025 .012 .004 .001 .000 .000
3 .000 .004 .023 .062 .115 .173 .227 .268 .290 .292 .273 .239 .194 .144 .097 .058 .029 .011 .003 .000
4 .000 .000 .003 .011 .029 .058 .097 .144 .194 .239 .273 .292 .290 ;268 .227 .173 .115 .062 .023 .004
5 .000 .000 .000 .001 .004 .012 .025 .047 .077 .117 .164 .214 .261 .299 .318 .311 .275 .210 .124 .041
6 .000 .000 .000 .000 .000 .001 .004 .008 .017 .032 .055 .087 .131 .185 .247 .311 .367 .396 .372 .257
7 .000 .000 .000 .000 .000 .000 .000 .001 .002 .004 .008 .015 .028 .049 .082 .133 .210 .321 .478 .698


n = 8

str .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .923 .663 .430 .272 .168 .100 .058 .032 .017 .008 .004 .002 .001 .000 .000 .000 .000 .000 .000 .000
1 .075 .279 .383 .385 .336 .267 .198 .137 .090 .055 .031 .016 .008 .003 .001 .000 .000 .000 .000 .000
2 .003 .051 .149 .238 .294 .311 .296 .259 .209 .157 .109 .070 .041 .022 .010 .004 .001 .000 .000 .000
3 .000 .005 .033 .084 .147 .208 .254 .279 .279 .257 .219 .172 .124 .081 .047 .023 .009 .003 .000 .000
4 .000 .000 .005 :018 .046 .087 .136 .188 .232 .263 .273 .263 .232 .188 .136 .087 .046 .018 .005 .000
5 .000 .000 .000 .003 .009 .023 .047 .081 .124 .172 .219 .257 .279 .279 .254 .208 .147 .084 .033 .005
6 .000 .000 .000 .000 .001 .004 .010 .022 .041 .070 .109 .157 .209 .259 .296 .311 .294 .238 .149 .051
7 .000 .000 .000 .000 .000 .000 .001 .003 .008 .016 .031 .055 .090 .137 .198 .267 .336 .385 .383 .279
8 .000 .000 .000 .000 .000 000 .000 .000 .001 .002 .004 .008 .017 .032 .058 .100 .168 .272 .430 .663


n = 9

r str .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
0 .914 .630 .387 .232 .134 .075 .040 .021 .010 .005 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000
1 .083 .299 .387 .368 .302 .225 .156 .100 .060 .034 .018 .008 .004 .001 .000 .000 .000 .000 .000 .000
2 .003 .063 .172 .260 .302 .300 .267 .216 .161 .111 .070 .041 .021 .010 .004 .001 .000 .000 .000 .000
3 .000 .008 .045 .107 .176 .234 .267 .272 .251 .212 .164 .116 .074 .042 .021 .009 .003 .001 .000 .000
4 .000 .001 .007 .028 .066 .117 .172 .219 .251 .260 .246 .213 .167 .118 .074 .039 .017 .005 .001 .000
5 .000 .000 .001 .005 .017 .039 .074 .118 .167 .213 .246 .260 .251 .219 .172 .117 .066 .028 .007 .001
6 .000 .000 .000 .001 .003 .009 .021 .042 .074 .116 .164 .212 .251 .272 .267 .234 .176 .107 .045 .008
7 .000 .000 .000 .000 .000 .001 .004 .010 .021 .041 .070 .111 .161 .216 .267 .300 .302 .260 .172 .063
8 .000 .000 .000 .000 .000 .000 .000 .001 .004 .008 .018 .034 .060 .100 .156 .225 .302 .368 .387 .299
9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .002 .005 .010 .021 .040 .075 .134 .232 .387 .630
instagram story viewer